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III. Multifidelity Hamiltonian 
Monte Carlo

I. Motivation

• Sungyong Seo et al. "Controlling Neural Networks with Rule Representations.“ NeurIPS 2021. 
• Dhruv V. Patel. "Multi-Fidelity Hamiltonian Monte Carlo Method with Deep Learning-based Surrogate.“ AAAI Fall Symposium series (FSS), virtual, 2021. 
• Betancourt, Michael, Simon Byrne, Sam Livingstone, and Mark Girolami. “The geometric foundations of Hamiltonian Monte Carlo.” Bernoulli 23, no. 4A (2017): 2257-2298.

IV. Synthetic Benchmarks
Goal: Given an ignition probability of 0.5, 
find probability distribution of input parameters

• Setting: Train data is 1000 BC, solution grid pairs, 
with boundary conditions given by sinusoidal 
functions with different phase and amplitude. We 
test the algorithm on the heat equation in 2D.

V. Ongoing Work

II. DeepCTRL
• A method for learning low fidelity  mapping from BC 

to solution of PDE by learning both from data and 
physical constraints

• Typical approach:

• Novel approach: Use the DeepCTRL loss architecture

• Synthetic Experiment:

• Implementing the MFHMC algorithm using HTR 2D 
simulations

• Use as a principled way to run experiments in the 
PSAAP project

• Datadriven low-fidelity model, in low dimensions 
based on GP regression and based on neural 
networks in high dimension

• Active learning to learn the low fidelity model more 
efficiently

Challenges:
• High fidelity simulations are very expensive
• Sampling using standard MCMC will waste many 

high-fidelity simulations

Idea: Create a differentiable low fidelity model (with 
DeepCTRL) and utilize efficient MCMC algorithms 
that need differentiable input function

Typical approach: 

•  Posterior distribution:

•  Construct prior,             (uniform)

•  Compute likelihood,               (gaussian)

•  Given fixed   , generate sample from,             ,using     
MCMC with HF model for  

• MFHMC algorithm:

• Evaluation metrics:

Key Idea:
• Use a differentiable LF surrogate model. This allows 

the use of effective gradient based MCMC methods 
(HMC). Once a sample is accepted, run the HF 
model with that input, and accept according to the 
Metropolis Hastings algorithm

• Acceptance probabilities in stage 1 and stage 2:

The error is largest near 
the domain boundary 

The train loss exhibit 
large stochasticity due to 
the alpha parameter 

At inference, we can pick alpha to 
either get small task error or small 
error from physical constraints

The above figures show the empirical density of                         , using different 
sampling algorithms. MFHMC  accurately model the full posterior over the region 
of interest (green box), whereas both MCMC and MFMCMC only sample a subset 
of the distribution.

Increasing c[0] correspond to a sinusoidal decision boundary with increasing 
amplitude. The autocorrelation for MFHMC increases with c[0], and the acceptance 
probability remain constant, in contrast to MCMC

As expected, using a higher numer 
of HMC steps decreases the 
autocorrelation for the benchmark

Increasing alphaHF makes the LF and HF 
models more different, thus increasing 
alphaHF makes MFHMC less efficient

Alpha, the stochastic parameter, is sampled for each data batch and used in both the 
neural network architecture and loss function 


