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Why Confidence Intervals for LLM Estimates?

Motivation: LLMs are strong at numerical estimation, but we also need reliable

uncertainty.

• Many real-world tasks need a range (risk assessment, planning, decision

support).

• A nominal 95% confidence interval should contain the truth about 95% of the

time.

• We study: Do LLMs’ confidence intervals match their stated coverage?

Key finding (from our experiments): models are systematically overconfident.

2



FermiEval Benchmark

Task: Fermi-style questions with order-of-magnitude ground truth.

• Dataset source: Science Olympiad Fermi questions.

• Labels are base-10 exponents: y ∈ Z corresponds to 10y .

• Split: 500 train / 500 test, filtered to 10−100 to 10100.

Prompted output: an interval in exponent space, e.g. [10L, 10U ] with integer

L ≤ U .
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Example: Measuring Calibration

Example question (from the benchmark):

How many pennies would it take to cover the state of Pennsylvania?

Ground truth label: y = 13 (meaning the answer is on the order of 1013).

Model output format: for a target level p (e.g., 95%), the model returns integers

(L,U) defining [10L, 10U ].

Coverage check (per item): count it as “covered” if y ∈ [L,U ]. Over the whole

dataset, observed coverage is the fraction of items covered, and we plot observed vs.

nominal p.

Calibration plot:

for targets p ∈ {0.90, 0.95, 0.99, 0.998}, compare

nominal p vs. observed coverage P̂r(y ∈ [L,U ]).
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Method: Conformal Calibration

Idea: treat LLM intervals as base intervals, then learn a single safety margin from

a held-out calibration set.

• Train vs. test: use the train split to form a calibration subset (to learn q),

then report coverage on the untouched test split (with q fixed).

• For each calibration question, measure how far the truth falls outside the base

interval:

si = 0 if yi ∈ [Li, Ui], else si = distance to the interval.

• Pick q so that about a (1− α) fraction of calibration examples have si ≤ q.

• Then widen every future interval by the same amount q to fix under-coverage.

si = max{L(xi)− yi, yi − U(xi)}, q1−α = (1− α)-quantile of {si}ni=1

CIconf(x) = [L(x)− q1−α, U(x) + q1−α ].

Guarantee: under exchangeability, Pr{y ∈ CIconf(x)} ≥ 1− α.
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Result: Confidence Intervals Are Overconfident
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Figure 1: Calibration curves for representative

models. Dashed line is perfect calibration (y = x).

• Coverage is below nominal:

overconfident intervals.

• Coverage plateaus as

nominal p increases.

• Nominal 99% covers only

∼ 65% on average.

• Same overconfidence

appears for several

open-weight models

(appendix).

• Other fixes: log-probability

elicitation (appendix) and

multi-query quantile

aggregation.

⇒ Conformal calibration lifts observed coverage from ∼ 65% at nominal 99% to

∼ 99% (nominal).
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Interval Quality: Winkler Score

Beyond coverage: we also want intervals to be sharp (not overly wide). Winkler

score (lower is better) combines width + a penalty when the truth is outside:

WS = (U − L) +
2

α

∣∣∣y − proj[L,U ](y)
∣∣∣ (α = 1− p).

Observed: for p = 0.99, conformal calibration reduces the average Winkler score

by 54%.
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Takeaways

1. We propose FermiEval: a benchmark for confidence-interval calibration on

Fermi-style estimation.

2. We find significant overconfidence: observed coverage is far below nominal and

plateaus for large nominal levels.

3. We propose an efficient conformal method that brings coverage back to

nominal levels.

4. We propose a perception-tunnel hypothesis explaining why LLMs

under-represent tails.

8


	Appendix

