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Why Confidence Intervals for LLM Estimates?

Motivation: LLMs are strong at numerical estimation, but we also need reliable

llIl(f(%l‘t’diIlty.

e Many real-world tasks need a range (risk assessment, planning, decision
support).

e A nominal 95% confidence interval should contain the truth about 95% of the
time.

e We study: Do LLMs’ confidence intervals match their stated coverage?

Key finding (from our experiments): models are systematically overconfident.



FermiEval Benchmark

Task: Fermi-style questions with order-of-magnitude ground truth.

e Dataset source: Science Olympiad Fermi questions.
e Labels are base-10 exponents: y € 7Z corresponds to 10Y.

e Split: 500 train / 500 test, filtered to 10~ 99 to 10100,

Prompted output: an interval in exponent space, e.g. [l()Lf l()[’v] with integer
L<U.



Example: Measuring Calibration

Example question (from the benchmark):

How many pennies would it take to cover the state of Pennsylvania?

Ground truth label: y = 13 (meaning the answer is on the order of 10'?%).

Model output format: for a target level p (e.g., 95%), the model returns integers
(L,U) defining [10%, 10Y].

Coverage check (per item): count it as “covered” if y € [L,U]. Over the whole
dataset, observed coverage is the fraction of items covered, and we plot observed vs.
nominal p.

Calibration plot:
for targets p € {0.90,0.95,0.99,0.998}, compare

nominal p vs. observed coverage 15\1(7/ € [L,U)).



Method: Conformal Calibration

Idea: treat LLM intervals as base intervals, then learn a single safety margin from
a held-out calibration set.

e Train vs. test: use the train split to form a calibration subset (to learn ¢),
then report coverage on the untouched test split (with ¢ fixed).

e For cach calibration question, measure how far the truth falls outside the base
interval:

s; =0ify; € [L;,U;], else s; = distance to the interval.

e Pick ¢ so that about a (1 — «) fraction of calibration examples have s; < ¢.

e Then widen every future interval by the same amount ¢ to fix under-coverage.
s; = max{L(z;) — i, yi — U(xs)}, g1—a = (1 — a)-quantile of {s;}i—;

CT“OM(I) =[L(z) —qi—a, U(z) + q1—a ]
Guarantee: under exchangeability, Pr{y € CI°"(z)} > 1 — a.

ot



Result: Confidence Intervals Are Overconfident

e Coverage is below nominal:

Conformal Calibration overconfident intervals.
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Figure 1: Calibration curves for representative
models. Dashed line is perfect calibration (y = x).

= Conformal calibration lifts observed coverage from ~ 65% at nominal 99% to
~ 99% (nominal).



Interval Quality: Winkler Score

Beyond coverage: we also want intervals to be sharp (not overly wide). Winkler

score (lower is better) combines width + a penalty when the truth is outside:

‘

WS = (U —1L)+ — |y — proji., v (y) (a=1-p).
(0%
Observed: for p = 0.99, conformal calibration reduces the average Winkler score

by 54%.



1. We propose FermiEval: a benchmark for confidence-interval calibration on
Fermi-style estimation.

2. We find significant overconfidence: observed coverage is far below nominal and
plateaus for large nominal levels.

3. We propose an efficient conformal method that brings coverage back to
nominal levels.

4. We propose a perception-tunnel hypothesis explaining why LLMs
under-represent tails.
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