

SD-KDE: Score-Debiased Kernel Density Estimation

Elliot L. Epstein Rajat Dwaraknath
Thanawat Sornwanee John Winnicki Jerry Weihong Liu

NeurIPS 2025

Motivation

- KDE estimates an unknown probability density by smoothing sample data
- The bandwidth controls the balance between bias and variance
- The **score function** is the gradient of the log-density, pointing toward regions where probability increases most rapidly
- **Diffusion models** use the score to reverse noise and recover sharp samples
- **SD-KDE** applies the same idea to correct KDE's over-smoothing, reducing bias

Algorithm: One-Step Score Debiasing

1. Given data $\textcolor{brown}{x}_i$, score estimator \hat{s} , kernel $\textcolor{brown}{K}$, bandwidth $\textcolor{brown}{h}$
2. Shift each point: $\tilde{x}_i = x_i + \delta \hat{s}(x_i)$
3. Estimate density: $\hat{p}(x) = \frac{1}{nh^d} \sum_i K\left(\frac{x - \tilde{x}_i}{h}\right)$

Optimal choices: $\delta = \frac{h^2}{2}$, $h_* = \Theta(n^{-1/(d+8)})$

Theoretical Guarantee

- Bias order reduces from $\mathcal{O}(h^2)$ to $\mathcal{O}(h^4)$; variance remains $\mathcal{O}(1/(nh^d))$
- Balancing terms yields the optimal bandwidth $h_* = n^{-1/(d+8)}$
- Provably improves AMISE convergence rate: from $\Theta(n^{-4/(d+4)})$ to $\Theta(n^{-8/(d+8)})$

Intuition

A short step along the score sharpens samples, canceling KDE's leading bias while keeping variance unchanged

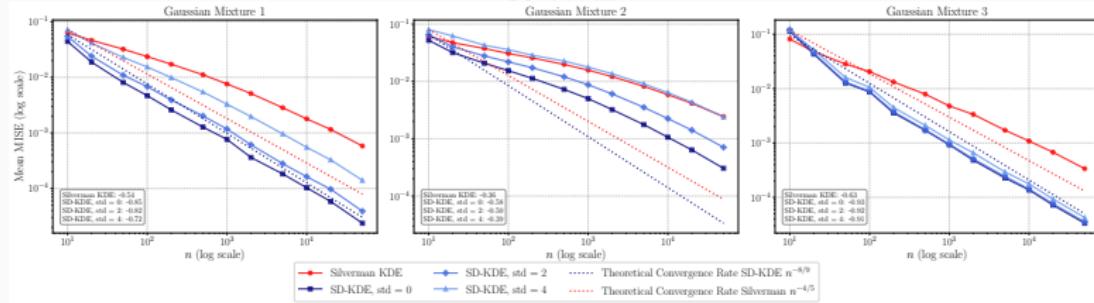
Algorithm Illustration



SD-KDE moves points along the score direction before smoothing, reducing bias without increasing variance

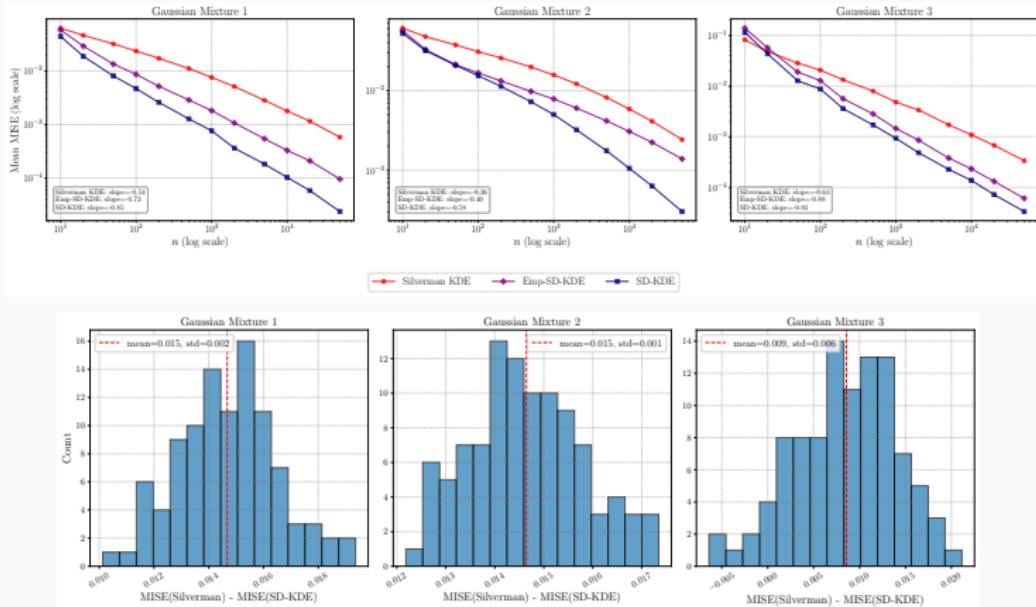
Experiments: 1D Gaussian Mixtures

Setup: Three 1D Gaussian mixtures; baseline Silverman KDE, MISE averaged over 50 seeds



- SD-KDE shows **faster asymptotic scaling** than Silverman KDE
- Slopes match theory ($n^{-8/9}$)
- Robust to noisy score estimates

Empirical Score and Consistency



- ⇒ You can approximate the score using KDE itself, no score oracle required
- ⇒ SD-KDE consistently outperforms Silverman across datasets and seeds

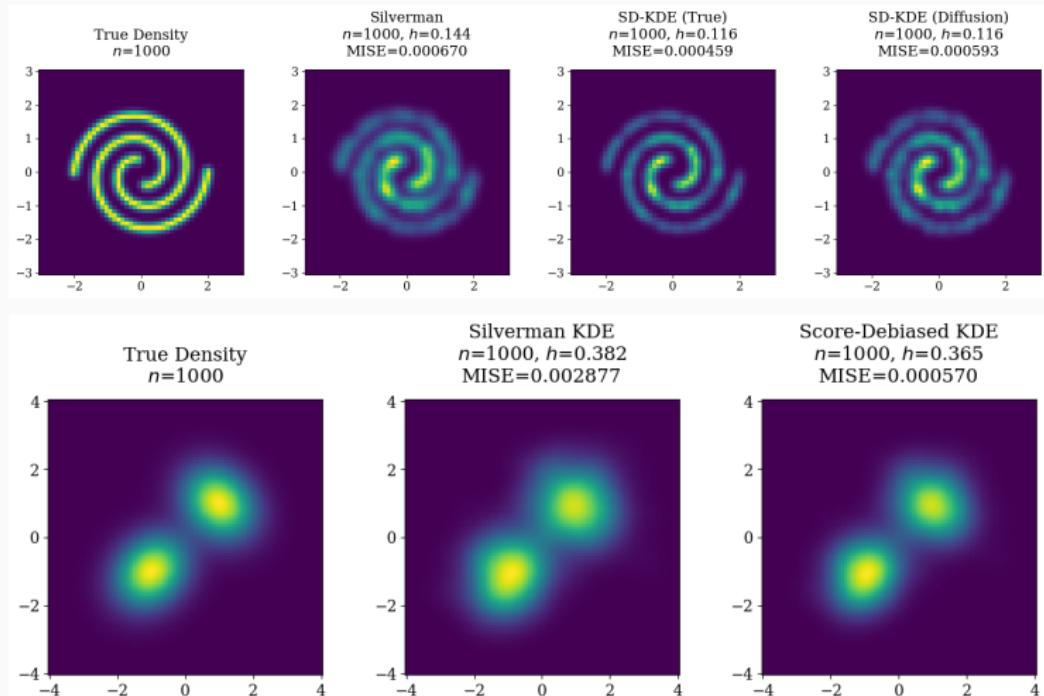
Theoretical Contribution

- **Bias reduction:** removes leading $\mathcal{O}(h^2)$ term using a one-step score shift
- **Convergence:** provably improves KDE rate from $\Theta(n^{-4/(d+4)})$ to $\Theta(n^{-8/(d+8)})$ in AMISE

Empirical Contribution

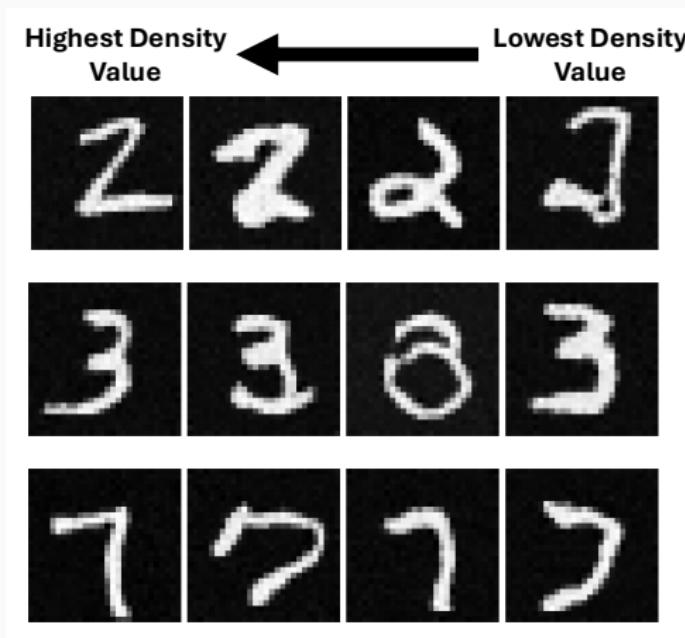
- **Practical algorithm:** simple, one-step KDE debiasing
- **No true score needed:** approximate directly from data
- **Consistent gains:** outperforms Silverman KDE across experiments

Appendix: 2D Synthetics Experiments



SD-KDE outperforms Silverman KDE with oracle or learned diffusion scores

Appendix: Latent-Space Density Ordering on MNIST



Ranking by SD-KDE-estimated density correlates with image realism