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Motivation

• KDE estimates an unknown probability density by smoothing sample data

• The bandwidth controls the balance between bias and variance

• The score function is the gradient of the log-density, pointing toward regions

where probability increases most rapidly

• Diffusion models use the score to reverse noise and recover sharp samples

• SD-KDE applies the same idea to correct KDE’s over-smoothing, reducing bias
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Method and Theory

Algorithm: One-Step Score Debiasing

1. Given data xi, score estimator ŝ, kernel K, bandwidth h

2. Shift each point: x̃i = xi + δ ŝ(xi)

3. Estimate density: p̂(x) = 1
nhd

∑
i K

(
x−x̃i

h

)
Optimal choices: δ = h2

2
, h∗ = Θ(n−1/(d+8))

Theoretical Guarantee

• Bias order reduces from O(h2) to O(h4); variance remains O(1/(nhd))

• Balancing terms yields the optimal bandwidth h∗ = n−1/(d+8)

• Provably improves AMISE convergence rate: from Θ(n−4/(d+4)) to

Θ(n−8/(d+8))

Intuition

A short step along the score sharpens samples, canceling KDE’s leading bias while

keeping variance unchanged
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Algorithm Illustration

SD-KDE moves points along the score direction before smoothing, reducing bias

without increasing variance
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Experiments: 1D Gaussian Mixtures

Setup: Three 1D Gaussian mixtures; baseline Silverman KDE, MISE averaged over

50 seeds
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Silverman KDE: -0.54
SD-KDE, std = 0: -0.85
SD-KDE, std = 2: -0.82
SD-KDE, std = 4: -0.72
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Silverman KDE: -0.36
SD-KDE, std = 0: -0.58
SD-KDE, std = 2: -0.50
SD-KDE, std = 4: -0.39

Gaussian Mixture 2
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Silverman KDE: -0.63
SD-KDE, std = 0: -0.93
SD-KDE, std = 2: -0.92
SD-KDE, std = 4: -0.91

Gaussian Mixture 3

Silverman KDE

SD-KDE, std = 0

SD-KDE, std = 2

SD-KDE, std = 4

Theoretical Convergence Rate SD-KDE n−8/9

Theoretical Convergence Rate Silverman n−4/5

• SD-KDE shows faster asymptotic scaling than Silverman KDE

• Slopes match theory (n−8/9)

• Robust to noisy score estimates
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Empirical Score and Consistency
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Silverman KDE: slope=-0.54
Emp-SD-KDE: slope=-0.73
SD-KDE: slope=-0.85

Gaussian Mixture 1
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Silverman KDE: slope=-0.36
Emp-SD-KDE: slope=-0.40
SD-KDE: slope=-0.58

Gaussian Mixture 2
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Silverman KDE: slope=-0.63
Emp-SD-KDE: slope=-0.88
SD-KDE: slope=-0.93

Gaussian Mixture 3
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mean=0.015, std=0.002
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⇒ You can approximate the score using KDE itself, no score oracle required

⇒ SD-KDE consistently outperforms Silverman across datasets and seeds
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Key Takeaways

Theoretical Contribution

• Bias reduction: removes leading O(h2) term using a one-step score shift

• Convergence: provably improves KDE rate from Θ(n−4/(d+4)) to

Θ(n−8/(d+8)) in AMISE

Empirical Contribution

• Practical algorithm: simple, one-step KDE debiasing

• No true score needed: approximate directly from data

• Consistent gains: outperforms Silverman KDE across experiments
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Appendix: 2D Synthetics Experiments

SD-KDE outperforms Silverman KDE with oracle or learned diffusion scores



Appendix: Latent-Space Density Ordering on MNIST

Lowest Density 
Value

Highest Density 
Value

Ranking by SD-KDE-estimated density correlates with image realism
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