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Abstract

Training a two layer neural network with gradient descent ensures, with high
probability over the initialisation of the network weights, that the mean squared
error training loss converges to zero, given that the neural network is polynomially
over-parametrized. The convergence rate is bounded by the step size and the least
eigenvalue of a matrix which depends on the input data but not on the initialisation of
the network weights. Convergence is proved as long as this matrix in positive definite,
which is the case as long as no input data are parallel. This is used to directly analyse
the dynamics of the predictions, as opposed to the weights. The problem is first
analysed with gradient flow, for training the first layer and subsequently for training
both layers. Using the results from the continuous setting, the case with gradient
descent is proved. Numerical simulations on synthetic data supports the findings. The
analysis will closely follow [Simon S. Du et al. Gradient Descent Provably Optimizes
Over-parameterized Neural Networks. 2018. arXiv: 1810.02054 [cs.LG]].
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1 Introduction

Recent developments, such as the ImageNet project [5], has made large sets of high
quality data readily available. GPUs has also seen large improvements in computing
power recently [18]. Within this framework, deep learning has seen success in many
areas, such as image classification and pattern recognition, where deep learning models
have had a performance comparable to experts [10], highlighting the importance of these
advances. Empirically it has been clear that the training loss (2) is converging to zero
when trained by gradient descent (65) for certain neural network configurations. However,
it has not been well understood theoretically as to why this happens. The goal of this
paper is to showcase why a neural network with one hidden layer (1) can achieve a linear
convergence rate for the loss function, by training with gradient descent, given that the
over-parametrization of the network is large enough. This is considered a stepping stone
towards a deeper understanding of the success of deep neural networks, which in the
future might provide theoretical hints as how to design neural networks in an effective
way.

First, the problem is analysed with an infinitesimal step size, i.e. gradient flow (26).
This provides key insights into the structure of the matrices that are critical for the
dynamics of the predictions. These insights are later used in the analysis for the gradient
descent algorithm (65). Furthermore, a section on the gradient flow for training both the
output layer and the hidden layer is provided to showcase the ability of the method to
generalise. Several numerical experiments, with the full code available, are also made to
give empirical insight into the proved theorems.

The analysis will closely follow the one made in [7]. Even stronger results has very re-
cently been published [8], which furthers the analysis done in [7] for deep neural networks,
by applying a similar, albeit more advanced, analysis technique.

1.1 Setting

Throughout this thesis the following setting will often be assumed.

Setting 1.1. Let (Ω,F ,P) be a probability space, let d,m, n ∈ N = {1, 2, 3, . . . }, x1,x2, . . . ,xn ∈
Rd, y = (y1, y2, . . . , yn) ∈ Rn, let a = (a1, a2, . . . , am) : [0,∞) × Ω → Rm, let for all
r ∈ {1, 2, . . . ,m} wr : [0,∞) × Ω → Rd, let f = (f1, f2, . . . , fn) : [0,∞) × Ω → Rn satisfy
for all i ∈ {1, 2, . . . , n}, t ∈ [0,∞), ω ∈ Ω that

fi(t, ω) =
1√
m

m∑
r=1

ar(t, ω)σ((wr(t, ω))∗xi), (1)

let L : [0,∞)× Ω→ R satisfy for all t ∈ [0,∞), ω ∈ Ω that

L(t, ω) =
1

2

n∑
i=1

(fi(t, ω)− yi)2, (2)
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let v : Ω→ Rd be a standard normal distributed random vector, let H = (hi,j)i,j∈{1,2,...,n} ∈
Rn×n satisfy for all i, j ∈ {1, 2, . . . , n} that

hi,j = E[x∗ixj1{v∗xi≥0,v∗xj≥0}] ∈ R, (3)

let ‖·‖2 : Rn → R be the Euclidean norm on Rn, let ‖·‖1 : Rn → R satisfy for all b =
(b1, b2, . . . , bn) ∈ Rn that ‖b‖1 =

∑n
i=1|bi|, let λ0 be the smallest eigenvalue of H, assume

for all j, i ∈ {0, 1, 2, . . . , n}, i 6= j that |x∗ixj | < ‖xi‖2‖xj‖2, let σ : R → R satisfy for all
z ∈ R that

σ(z) = max(0, z), (4)

and let H = (hi,j)i,j∈{1,2,...,n} : [0,∞) × Ω → Rn×n satisfy for all i, j ∈ {0, 1, . . . , n},
t ∈ [0,∞), ω ∈ Ω that

hi,j(t, ω) =
1

m
x∗ixj

m∑
r=1

(ar(t, ω))21{(wr(t,.))∗xi≥0,(wr(t,.))∗xj≥0}(ω). (5)

1.2 Related articles

A related article is [15]. There, multiclass classification for a two layer neural network is
considered, trained by stochastic gradient descent (SGD). The loss function considered
is the Cross Entropy loss with soft-max activation. There, the major assumption on
the input data is that the over-parametrization depends polynomially on 1

δ′
, where δ

′
is

the minimal distance between each of the inputs. The article show that if m ≥ M =
poly(1ε ,

1
δ′
, B, T ), with B being the batch size and T the number of iterations with SGD,

then on an event with high probability it will hold that after T
′

iterations the training
loss will be smaller than a positive constant. However, the article never shows that the
training loss will converge to zero for an infinite time. One strength with this article is
that the analysis is based on SGD which is an algorithm often used in practice. Other
articles which has considered the dynamics of the predictions directly include [19] and
[17]. Similar articles that assume a normal input distribution include [2].

Articles that has analysed the optimisation landscape include [11] and [6] .
In [21] matrices related to H were analysed to guarantee convergence of the training

loss. Related articles where the considered activation function σ was different include
[16], [14], and [20].

Similar results in the setting of deep networks include [12]. In [3] the problem was
considered using tools from optimal transport. Other articles establishing guarantees for
gradient descent training neural networks include [4].

2 Continuous time analysis

In this section the gradient flow algorithm (26) for training the hidden weights of the
neural network 1 will be considered. We will first prove that if no two input data are
parallel, the matrix H (3) will have a positive least eigenvalue. This quantity will be
central in determining a bound on the convergence rate. We also prove an upper bound
on this least eigenvalue, this will simplify many expressions related to the convergence
rate of the training loss. Then, we show that H(t, ω), which controls the dynamics of
the predictions f(t, ω), will remain close to H and the weights will remain close to the
initialisation. This will ensure that under certain conditions, the training loss converges
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to zero, i.e., for all times t ∈ [0,∞), and all ω in an event which hold true with high
probability it holds that

L(t, ω) ≤ L(0, ω) exp(−tλ0). (6)

In this section we will follow the article [7] .

Remark 2.1. The major assumption from Setting 1.1 that is used to prove Theorem 2.2,
is that no two input vectors are parallel.

Theorem 2.2. Assume Setting 1.1. Then it holds that

λ0 > 0. (7)

Proof of Theorem 2.2. Let c ∈ Rd,
let φx : Rd → Rd satisfy for all x ∈ Rd, c ∈ Rd that

φx(c) =

{
x x∗c ≥ 0

0 x∗c < 0,
(8)

note that
hi,j = E[(φxi(v))∗φxj (v)], (9)

let H be the real vector space of integrable functions f : Rd → Rd with the inner product
〈f, g〉H = E[(f(v))∗g(v)], let α1, α2, . . . , αn ∈ R, and assume that∥∥∥∥∥∥

n∑
j=1

φxj (w)αj

∥∥∥∥∥∥
2

H

= 0. (10)

Lemma 2.3. Let i ∈ {1, 2, . . . , n} and let Di = {c ∈ Rd : c∗xi = 0}. Then it holds that
Di 6⊂

⋃
j∈{1,...,n} : j 6=iDj.

Proof of Lemma 2.3. Let i ∈ {0, 1, 2, . . . , n}, let µi be the canonical Lebesgue measure on
Di, and let for all j ∈ {0, 1, 2, . . . , n}, j 6= i, Ai,j be the 2× d matrix given by

Ai,j =

[
— xi —
— xj —

]
. (11)

Note that Di
⋂
Dj = {c ∈ Rd : c ∈ ker(Ai,j)}. This, and the assumption for all j ∈

{0, 1, 2, . . . , n}, j 6= i that |x∗ixj | < ‖xi‖2‖xj‖2 ensures that dim(Di
⋂
Dj) = d − 2.

Combining this, dim(Di) = d−1, and Di
⋂
Dj ⊂ Di ensure that for all j ∈ {0, 1, 2, . . . , n},

j 6= i that µi(Di
⋂
Dj) = 0. Hence, we obtain that∑

i 6=j
µ(Di ∩Dj) = 0. (12)

This and Theorem 7.5 ensures that

µi

(
Di

⋂
(∪j∈{1,...,n} : j 6=iDj)

)
= µi

 ⋃
j∈{1,...,n} : j 6=i

(Di ∩Dj)


≤

∑
j∈{1,...,n} : j 6=i

µi(Di ∩Dj) = 0.

(13)

Hence, we obtain that Di 6⊂ ∪j∈{1,...,n} : j 6=iDj . The proof of Lemma 2.3 is thus completed.
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Let i ∈ {1, 2, . . . , n}. Lemma 2.3 now ensures that the set Di \ ∪j∈{1,...,n} : j 6=iDj is

not empty. Hence, let z ∈ Di \ ∪j∈{1,...,n} : j 6=iDj , let B(z, r) = {q ∈ Rd : |z− q| < r}, let

Bi(z, r)
+ = B(z, r)∩{c ∈ Rd : c∗xi ≥ 0}, let Bi(z, r)

− = B(z, r)∩{c ∈ Rd : c∗xi < 0}, let
µ be the canonical Lebesgue measure on Rd, and let r > 0 small enough to ensure that
B(z, r) ∩ Dj = ∅. Moreover, note that for j 6= i it hols that φxj

(c) is continuous with
respect to c in an neighbourhood of z. This implies for all j ∈ {1, . . . , n}, : j 6= i, a given
ε > 0 and r(ε) ∈ (0,∞) sufficiently small that∣∣∣∣∣ 1

µ(Bi(z, r)+)

∫
Bi(z,r)+

φxj (c)− φxj (z)dc

∣∣∣∣∣ ≤ 1

µ(Bi(z, r)+)

∫
Bi(z,r)+

∣∣φxj (c)− φxj (z)
∣∣dc ≤ ε,

(14)
and∣∣∣∣∣ 1

µ(Bi(z, r)−)

∫
Bi(z,r)−

φxj (c)− φxj (z)dc

∣∣∣∣∣ ≤ 1

µ(Bi(z, r)−)

∫
Bi(z,r)−

∣∣φxj (c)− φxj (z)
∣∣dc ≤ ε.

(15)
(14) hence implies that

lim
r→0+

1

µ(Bi(z, r)+)

∫
Bi(z,r)+

φxj (c)dc = φxj (z), (16)

and (15) implies that

lim
r→0+

1

µ(Bi(z, r)−)

∫
Bi(z,r)−

φxj (c)dc = φxj (z). (17)

Next, observe that it holds that

lim
r→0+

1

µ(Bi(z, r)+)

∫
Bi(z,r)+

φxi(c)dc = xi, (18)

and that

lim
r→0+

1

µ(Bi(z, r)−)

∫
Bi(z,r)−

φxi(c)dc = 0. (19)

Note that (10) ensures that P-a.s. it holds that

n∑
j=1

αjφxj (w) = 0. (20)

This implies that
∑n

j=1 αjφxj (c) = 0 for almost all c ∈ Rd. Combining this (16), (17),
(18), and (19) ensures that

0 = lim
r→0+

1

µ(Bi(z, r)+)

∫
Bi(z,r)+

n∑
j=1

αjφxj (c)dc

− lim
r→0+

1

µ(Bi(z, r)−)

∫
Bi(z,r)−

n∑
j=1

αjφxj (c)dc = xiαi. (21)

This, the fact that i ∈ {0, 1, 2, . . . , n} was arbitrarily picked, and for all i ∈ {1, 2, . . . , n}
it holds that xi 6= 0 ensures that

α1 = ... = αn = 0. (22)
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This implies for all z ∈ Rd\{0} that

z∗Hz = 〈
n∑
i=1

φxizi,

n∑
j=1

φxjzj〉H

= ‖
n∑
j=1

φxjzj‖2H > 0.

(23)

This establishes that H is positive definite. This implies that λ0 = λmin(H) > 0. The
proof of Theorem 2.2 is thus completed.

Remark 2.4. Note that the assumption in Setting 1.1 that no two input vectors are
parallel will hold in many real world data-sets. When the Setting 1.1 is assumed, it is
understood that λ0 > 0.

Theorem 2.5. Assume Setting 1.1 and assume for all i ∈ {0, 1, 2, . . . , n} that ‖xi‖2 = 1.
Then it holds that

λ0 ≤ n. (24)

Proof of Theorem 2.5 . Let z ∈ Rn, and note that the assumptions in the theorem,
Lemma 7.6, and Lemma 7.9 ensures that

λ0‖z‖22 ≤
n∑
i=1

n∑
j=1

∣∣E[(φxi(v))∗φxj (v)]
∣∣|zi||zj |

≤ ‖z‖21 ≤ n‖z‖
2
2.

(25)

The proof of Theorem 2.5 is thus completed.

Theorem 2.6 (Convergence Rate of Gradient Flow). Assume Setting 1.1, let C ∈ (0,∞),
assume for all i ∈ {0, 1, 2, . . . , n} that ‖xi‖2 = 1, assume for all i ∈ {0, 1, 2, . . . , n}
that |yi| ≤ C, assume for all r ∈ {0, 1, 2, . . . ,m} that wr(0, .) ∼ N (0, I) and ar(0, .) ∼
Unif[{−1, 1}] are i.i.d. random vectors, assume for all t ∈ (0,∞), ω ∈ Ω that a(t, ω) =

a(0, ω), let K = 22162(C2+1)33

2π , assume that m ≥ Kn6

λ30δ
3 , let δ ∈ (0, 1), assume for all

r ∈ {1, 2, . . . ,m}, t ∈ [0,∞), ω ∈ Ω that

dwr(t, ω)

dt
= − 1√

m

n∑
i=1

(fi(t, ω)− yi)arxi1{(wr(t,.))∗xi≥0}(ω), (26)

let δ1 = δ2 = δ3 = δ
3 , let R =

√
2πδ2λ0
16n2 , let B3 = {ω ∈ Ω: ‖y − f(0, ω)‖22 ≤

n(C2+ 1
2)

δ3
} ∈ F ,

let B0(ω) =
{
ŵ1, ŵ2, . . . , ŵm ∈ Rd : maxr∈{1,2,...,m}‖wr(0, ω)− ŵr(ω)‖2 ≤ R

}
, let ĥi,j

satisfy for all i, j ∈ {1, 2, . . . , n}, ŵ1, ŵ2, . . . , ŵn ∈ Rd that ĥi,j = 1
mx∗ixj

∑m
r=1 1{(ŵr)∗xi≥0,(ŵr)∗xj≥0},

let B2 =
{
ω ∈ Ω:

∑n,n
j,i=1 supŵ1,ŵ2,...,ŵm∈B0(ω)

{∣∣∣ĥi,j − hi,j(0, ω)
∣∣∣} ≤ 4Rn2

δ2
√
2π

}
∈ F , and let

B1 =
⋂n,n
i,j=1

{
ω ∈ Ω: |hi,j(0, ω)− hi,j | ≤

√
1
2m log

(
2n2

δ1

)}
∈ F . Then

(i) it holds that P(B1 ∩B2 ∩B3) ≥ 1− δ

(ii) it holds for all t ∈ [0,∞), ω ∈ B1 ∩B2 ∩B3 that

‖f(t, ω)− y‖22 ≤ exp(−λ0t)‖f(0, ω)− y‖22. (27)
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Proof of Theorem 2.6. Note that the assumptions of Theorem 2.6, simplifies
H = (hi,j)i,j∈{1,2,...,n} from Setting 1.1 for all i, j ∈ {0, 1, 2, . . . , n}, t ∈ [0,∞), ω ∈ Ω to

hi,j(t, w) =

m∑
r=1

x∗ixj
1

m
1{(wr(t,.))∗xi≥0,(wr(t,.))∗xj≥0}(ω). (28)

Next observe that for all t ∈ [0,∞), ω ∈ Ω it holds that

d

dt
fi(t, ω) =

1√
m

m∑
r=1

ar
d

dt
σ((wr(t, ω))∗x)

=
1√
m

m∑
r=1

arx
∗
i1{(wr(t,.))∗x≥0}(ω)

d

dt
wr(t, ω)

= x∗i
1

m

m∑
r=1

ar1{(wr(t,.))∗xi≥0}(ω)
n∑
j=1

(yj − fj(t, ω))arxj1{(wr(t,.))∗xj≥0}

=
n∑
j=1

(yj − fj(t, ω))
m∑
r=1

x∗ixj
1

m
1{(wr(t,.))∗xi≥0,(wr(t,.))∗xj≥0}(ω)

=

n∑
j=1

(yj − fj(t, ω))hi,j .

(29)

Hence, we obtain that
d

dt
f(t, ω) = H(t, ω)(y − f(t, ω)). (30)

Lemma 2.7. Assume Setting 1.1, assume for all i ∈ {0, 1, 2, . . . , n} that ‖xi‖2 = 1,
assume for all r ∈ {0, 1, 2, . . . ,m} that wr(0, .) ∼ N (0, I) and ar(0, .) ∼ Unif[{−1, 1}] are
i.i.d. random vectors, let δ1 ∈ (0, 1), and let

B1 =

n,n⋂
i,j=1

{
ω ∈ Ω: |hi,j(0, ω)− hi,j | ≤

√
1

2m
log

(
2n2

δ1

)}
∈ F . (31)

Then P(B1) ≥ 1 − δ1, for all ω ∈ B1 it holds that ‖H(0, ω)− H‖2 ≤
λ0
4 , and

λmin(H(0, ω)) ≥ 3
4λ0.

Proof of Lemma 2.7. Let δ′ = δ1
n2 , let Ai,j =

{
ω ∈ Ω: |hi,j(0, ω)− hi,j | ≤

√
1
2m log

(
2
δ′

)}
,

let Xr
i,j(t, ω) satisfy for all i, j ∈ {1, 2, . . . , n}, r ∈ {1, 2, . . . ,m}, t ∈ [0,∞), ω ∈ Ω that

Xr
i,j(t, ω) = x∗ixj1{(wr(t,.))∗xi≥0,(wr(t,.))∗xj≥0}(ω) . First, observe that

|hi,j(0, ω)− hi,j | =

∣∣∣∣∣ 1

m

m∑
r=1

x∗ixj1{(wr(0,.))∗xi≥0,(wr(0,.))∗xj≥0}(ω)

− E
[
x∗ixj1{(wr(0,.))∗xi≥0,(wr(0,.))∗xj≥0}

]∣∣∣∣∣
=

∣∣∣∣∣ 1

m

m∑
r=1

(
Xr
i,j(0, ω)− E

[
Xr
i,j(0, .)

])∣∣∣∣∣.
(32)
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Note for all i ∈ {1, 2, . . . , n} that {(wr)
∗xi}mr=1 are independent random variables. This

implies for all i, j ∈ {1, 2, . . . , n} it holds that {Xr
i,j}mr=1 are independent random variables.

Combining this, (32), and Theorem 7.4 implies that

P

({
ω ∈ Ω: |hi,j(0, ω)− hi,j | ≤

√
1

2m
log

(
2

δ′

)})
≥ 1− δ′ . (33)

Next we combine (33) and Theorem 7.5 to obtain that

P

 n,n⋃
i,j=1

Aci,j

 ≤ n,n∑
i,j=1

P
(
Aci,j

)
≤ n2δ′

= δ1.

(34)

This implies that
P(B1) ≥ 1− δ1. (35)

Hence, for all ω ∈ B1 it holds that

‖H(0, ω)− H‖22 ≤ ‖H(0, ω)− H‖2F

=

n,n∑
i,j=1

|hi,j(0, ω)− hi,j |2

≤ n2

2m
log

(
2n2

δ1

)
≤ 2n2

m
log

(
n

δ1

)
.

(36)

Next, note that the assumption on m and Theorem 2.5 ensures that

m ≥ Kn6

2λ30δ
3
≥
n28 log

(
3n
δ

)
λ0

. (37)

Next we combine this and (36) to obtain for all ω ∈ B1 that

‖H(0, ω)− H‖2 ≤
λ0
4
. (38)

This, combined with Lemma 7.8 ensures for all ω ∈ B1 that

‖H(0, ω)‖2 ≥
3λ0
4
. (39)

The proof of Lemma 2.7 is thus completed.

Lemma 2.8. Assume Setting 1.1, assume for all r ∈ {0, 1, 2, . . . ,m} that wr(0, .) ∼
N (0, I) and ar(0, .) ∼ Unif[{−1, 1}] are i.i.d. random vectors, let R be given by R =√

2πδ2λ0
16n2 , let δ1, δ2 ∈ (0, 1) let for all ω ∈ Ω

B0(ω) =
{
ŵ1, ŵ2, . . . , ŵm ∈ Rd : maxr∈{1,2,...,m}‖wr(0, ω)− ŵr‖2 ≤ R

}
, let Ĥ = (ĥi,j)i,j∈{1,2,...,n} ∈

Rn×n satisfy for all ŵ1, ŵ2, . . . , ŵm ∈ Rd that

ĥi,j =
1

m
x∗ixj

m∑
r=1

1{(ŵr)∗xi≥0,(ŵr)∗xj≥0}, (40)
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let B2 =
{
ω ∈ Ω:

∑n,n
j,i=1 supŵ1,ŵ2,...,ŵm∈B0(ω)

{∣∣∣ĥi,j − hi,j(0, ω)
∣∣∣} ≤ 4Rn2

δ2
√
2π

}
∈ F , and let

B1 =
⋂n,n
i,j=1

{
ω ∈ Ω: |hi,j(0, ω)− hi,j | ≤

√
1
2m log

(
2n2

δ1

)}
∈ F . Then

(i) Ω 3 ω 7→ supŵ1,ŵ2,...,ŵm∈B0(ω)

{∣∣∣ĥi,j − hi,j(0, ω)
∣∣∣} ∈ R is measurable.

(ii) it holds that P(B2) ≥ 1− δ2

(iii) let ω ∈ B1 ∩B2 and let ŵ1, ..., ŵm ∈ Rd satisfy for all r ∈ {1, 2, . . . ,m} that
‖wr(0, ω)− ŵr‖2 ≤ R. Then it holds that ‖H(0, ω)− Ĥ‖2 ≤ λ0

4 and λmin(Ĥ) ≥ λ0
2 .

Proof of Lemma 2.8. First, note that wr(0, .) is a random vector ensures that
1{(wr(0,.))∗xi≥0,(wr(0,.))∗xj≥0} is measurable. This combined with the fact that sums, supre-
mums, and addition by constants to measurable functions are measurable functions es-
tablishes item (i). Note that Theorem 7.1 ensures that

P({|(wr(0, .))
∗xi| ≤ R}) ≤

2R√
2π
. (41)

Obseve for all ω ∈ B, j ∈ {1, 2, . . . , n} that
∣∣∣x∗j (wr(0, ω)− ŵr)

∣∣∣ < R This, combined

with (41) and the fact that w1(0, .),w2(0, .), . . . ,wm(0, .) are independent ensures for all
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i, j ∈ {1, 2 . . . , n} that

E

[
sup

ŵ1,ŵ2,...,ŵm∈B(.)

{∣∣∣ĥi,j − hi,j(0, .)
∣∣∣}]

= E

[
sup

ŵ1,ŵ2,...,ŵm∈B(.)

{
1

m

∣∣∣∣x∗ixj m∑
r=1

1{(wr(0,.))∗xi≥0,(wr(0,.))∗xj≥0}(ω)

− 1{(ŵr)∗xi≥0,(ŵr)∗xj≥0}

∣∣∣∣}
]

= E

[
sup

ŵ1,ŵ2,...,ŵm∈B(.)

{
1

m

∣∣∣∣x∗ixj m∑
r=1

1{(wr(0,.))∗xi≥0,(wr(0,.))∗xj≥0}(ω)

− 1{(ŵr)∗xi≥0,(ŵr)∗xj≥0} + 1{(wr(0,.))∗xi≥0,(ŵr)∗xj≥0}

− 1{(wr(0,.))∗xi≥0,(ŵr)∗xj≥0}

∣∣∣∣}
]

= E

[
sup

ŵ1,ŵ2,...,ŵm∈B(.)

{
1

m

∣∣∣∣x∗ixj m∑
r=1

1{(wr(0,.))∗xi≥0}
(
1{(wr(0,.))∗xj≥0}(ω)

− 1{(ŵr)∗xj≥0}
)

+ 1{(ŵr)∗xj≥0}
(
1{(wr(0,.))∗xi≥0}(ω)− 1{(ŵr)∗xi≥0}

)∣∣∣∣}
]

≤ 1

m

m∑
r=1

E
[

sup
ŵ1,ŵ2,...,ŵm∈B(.)

{∣∣1{(wr(0,.))∗xi≥0}(ω)− 1{(ŵr)∗xi≥0}
∣∣}

+ sup
ŵ1,ŵ2,...,ŵm∈B(.)

{∣∣∣1{(wr(0,.))∗xj≥0}(ω)− 1{(ŵr)∗xj≥0}

∣∣∣}]
≤ 1

m

m∑
r=1

P({|(wr(0, .))
∗xi| < R}) + P({|(wr(0, .))

∗xj | < R})

≤ 4R√
2π
.

(42)

This and the fact that the expectation is linear ensures that

E

 n∑
i=1

n∑
j=1

sup
ŵ1,ŵ2,...,ŵm∈B(.)

{∣∣∣ĥi,j − hi,j(0, .)
∣∣∣}
 ≤ 4Rn2√

2π
(43)

This, item (i), and Markov’s inequality 7.2 ensures that P(B2) ≥ 1− δ2. This establishes
item (ii). Let ω̂ ∈ B1 ∩B2 and let ŵ1, ..., ŵm ∈ Rd satisfy for all r ∈ 1, 2, ...,m, that
‖wr(0, ω̂)− ŵr‖2 ≤ R. Lemma 7.6 and Theorem 7.7 thus ensures that∥∥∥Ĥ−H(0, ω̂)

∥∥∥
2
≤
∥∥∥Ĥ−H(0, ω̂)

∥∥∥
F

≤
n∑
i=1

n∑
j=1

∣∣∣ĥi,j − hi,j(0, ω̂)
∣∣∣

≤
n∑
i=1

n∑
j=1

sup
ŵ1,ŵ2,...,ŵm∈B(ω̂)

{∣∣∣ĥi,j − hi,j(0, ω̂)
∣∣∣}

≤ 4Rn2√
2πδ2

.

(44)

10



This, combined with the fact that R =
√
2πδ2λ0
n216

ensures that∥∥∥Ĥ−H(0, ω̂)
∥∥∥
2
≤ λ0

4
. (45)

Next we combine this, Lemma 7.8, and Lemma 2.7 to establish that

λmin(Ĥ) ≥ λmin(H(0, ω̂))−
∥∥∥Ĥ−H(0, ω̂)

∥∥∥
2
≥ λ0

2
. (46)

The proof of Lemma 2.8 is thus completed.

Lemma 2.9. Assume that the conditions of Theorem 2.6 hold, let ω ∈ Ω, let t ∈
(0,∞), assume for all s ∈ [0, t] that λmin(H(s, ω)) ≥ λ0

2 , and let R1 be given by R1 =
2
√
n‖y−f(0,ω)‖2√

mλ0
. Then for all s ∈ [0, t] it holds that

‖y − f(s, ω)‖22 ≤ exp(−λ0s)‖y − f(0, ω)‖22, (47)

and for all r ∈ {0, 1, 2, . . . ,m}, s ∈ [0, t] that

‖wr(s, ω)−wr(0, ω)‖2 ≤ R1. (48)

Proof of Lemma 2.9. First, note that (30) ensures for all s ∈ [0, t] that

d

ds
‖y − f(s, ω)‖22 = −2‖y − f(s, ω)‖2

df(s, ω)

ds
= −2(y − f(s, ω))∗H(t, ω)(y − f(s, ω))

≤ −λ0‖y − f(s, ω)‖22.

(49)

This ensures for all s ∈ [0, t] that

d

ds

(
exp(λ0s)‖y − f(s, ω)‖22

)
≤ 0. (50)

This implies for all s ∈ [0, t] that

‖y − f(s, ω)‖22 ≤ exp(−λ0s)‖y − f(0, ω)‖22. (51)

Next, note that (26), the fact that ‖xi‖2 = 1, (51), and Lemma 7.6 ensures for all
s ∈ [0, t] that∥∥∥∥dwr(s, ω)

ds

∥∥∥∥
2

=
1√
m

∥∥∥∥∥
n∑
i=1

(fi(s, ω)− yi)arxi1{(wr(s,.))∗xi≥0}(ω)

∥∥∥∥∥
2

≤ 1√
m

n∑
i=1

‖fi(s, ω)− yi‖2

≤ 1√
m

n∑
i=1

‖fi(s, ω)− yi‖1

=

√
n√
m
‖f(s, ω)− y‖2

≤
√
n√
m
‖f(0, ω)− y‖2 exp

(
−λ0s

2

)

(52)

11



This, combined with Theorem 7.3 implies that

‖wr(t, ω)−wr(0, ω)‖2 =

∥∥∥∥∫ t

0

dwr(s, ω)

ds
ds

∥∥∥∥
2

≤
∫ t

0

∥∥∥∥dwr(s, ω)

ds

∥∥∥∥
2

ds

≤
∫ t

0

√
n√
m
‖f(0, ω)− y‖2 exp

(
−λ0s

2

)
ds

≤
2
√
n‖f(0, ω)− y‖2√

mλ0
= R1.

(53)

The proof of Lemma 2.9 is thus completed.

Note that Theorem 7.1, E[a2r ] = 1, and for all r ∈ {1, 2, . . . ,m}, i ∈ {1, 2, . . . , n} it
holds that E[(σ((wr)

∗xi))
2] = 1

2 , ensures for all i ∈ {1, 2, . . . , n} that

E[f2i (0, .)] =
1

2
. (54)

Next, combining for all r ∈ {1, 2, . . . ,m} that ar(0, .) is independent of wr(0, .), E[ar(0, .)] =
0, (54), for all i ∈ {1, 2, . . . , n} that |yi| < C, and the linearity of expectations ensures
that

E[‖y − f(0, ω)‖22] =
n∑
i=1

y2i − 2yiE[fi(0, .)] + E[f2i (0, .)]

=
n∑
i=1

y2i +
1

2

≤ n
(
C2 +

1

2

)
.

(55)

Let B3 =

{
ω ∈ Ω: ‖y − f(0, ω)‖22 ≤

n(C2+ 1
2)

δ3

}
and let R1 =

2
√
n‖f(0,ω)−y‖2√

mλ0
. Note that

‖y − f(0, .)‖22 is a non negative random variable. This, (55), and Markov’s inequality 7.2
ensures that

P(B3) ≥ 1− δ3. (56)

This combined with fact that m ≥ n622162(C2+1)
2πλ40δ

2
2δ3

ensures for all ω ∈ B3 that

R1 < R. (57)

Lemma 2.10. Assume Setting 1.1, assume that the conditions of Theorem 2.6 hold, let

B3 =

{
ω ∈ Ω: ‖y − f(0, ω)‖22 ≤

n(C2+ 1
2)

δ3

}
∈ F , let

B0(ω) =
{
ŵ1, ŵ2, . . . , ŵm ∈ Rd : maxr∈{1,2,...,m}‖wr(0, ω)− ŵr(ω)‖2 ≤ R

}
, let

B2 =
{
ω ∈ Ω:

∑n,n
j,i=1 supŵ1,ŵ2,...,ŵm∈B0(ω)

{∣∣∣ĥi,j − hi,j(0, ω)
∣∣∣} ≤ 4Rn2

δ2
√
2π

}
, and let

B1 =
⋂n,n
i,j=1

{
ω ∈ Ω: |hi,j(0, ω)− hi,j | ≤

√
1
2m log

(
2n2

δ1

)}
∈ F . Then

(i) P(B1 ∩B2 ∩B3) ≥ 1− δ1 − δ2 − δ3 = 1− δ
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(ii) for all r ∈ {0, 1, 2, . . . ,m}, t ∈ [0,∞), ω ∈ B1 ∩B2 ∩B3, t ∈ [0,∞) it holds that

‖wr(t, ω)−wr(0, ω)‖2 ≤ R1 (58)

(iii) for all ω ∈ B1 ∩B2 ∩B3, t ∈ [0,∞) it holds that

λmin(H(t, ω)) ≥ λ0
2

(59)

(iv) for all t ∈ [0,∞), ω ∈ B1 ∩B2 ∩B3 it holds that that

‖y − f(t, ω)‖22 ≤ ‖y − f(0, ω)‖22 exp(−λ0t) (60)

.

Proof of Lemma 2.10. First note that Lemma 2.7, Lemma 2.8 and (56), establishes item (i).
We prove item (ii) by a contradiction argument.

Assume there exist r ∈ {0, 1, 2, . . . ,m}, ω0 ∈ B1 ∩B2 ∩B3, t
′ ∈ [0,∞) such that (58)

does not hold. Then by Lemma 2.9 there exist a s0 ≤ t
′

such that λmin(H(s0, ω0)) <
λ0
2 .

This and Lemma 2.8 ensures that there exist a finite time t0 < s0 such that

t0 = inf

{
t > 0: max

r∈{0,1,2,...,m}
‖wr(t, ω0)−wr(0, ω0)‖2 ≥ R

}
(61)

This, combined with the continuity of W(t) ensures that there exist a r0 ∈ {0, 1, 2, . . . ,m}
such that

‖wr0(t0, ω0)−wr0(0, ω0)‖2 = R. (62)

This and Lemma 2.8 implies for all t ≤ t0 that λmin(H(t, ω0)) ≥ λ0
2 . This combined with

Lemma 2.9 ensures for all r ∈ {0, 1, 2, . . . ,m} that

‖wr(t0, ω0)−wr(0, ω0)‖2 ≤ R1. (63)

This, combined with the fact that R1 < R and (62) gives a contradiction. This establishes
item (ii). Lemma 2.8 and item (ii) establishes item (iii). Lemma 2.9 and item (iii)
establishes item (iv). The proof of Lemma 2.10 is thus completed.

The proof of Theorem 2.6 is thus completed.

Remark 2.11. This result is an improvement on the result in [7] in that it is possible
to see at the moment of initialization if ω ∈ B1 ∩ B2 ∩ B3, and hence if convergence is
guaranteed. If convergence is not guaranteed it is possible to re-initialise until convergence
is guaranteed.

3 Discrete time analysis

Throughout this section, we will consider the convergence of the training loss (2) for a
neural network (1) trained by the gradient descent algorithm (65). The proof idea is to
develop several inequalities that allows us to prove that if m is large enough, and η is
small enough, with a high probability over the initialisation it holds for all k ∈ N0 that

‖y − f(k + 1, ω)‖2 ≤ (1− ηλ0
2

)‖y − f(k, ω)‖2. (64)
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From the continuous time analysis we will need Lemma 2.8 and hence also indirectly
Lemma 2.7 to bound the least eigenvalue of H(k, ω). Both of which are valid indepen-
dently of the optimisation algorithm used. In this section we will follow the article [7].

Theorem 3.1 (Convergence Rate of Gradient Descent). Assume Setting 1.1, assume
for all i ∈ {0, 1, 2, . . . , n} that ‖xi‖2 = 1, let C ∈ [0,∞), assume n > 3, assume for all
i ∈ {0, 1, 2, . . . , n} that |yi| ≤ C, assume for all r ∈ {0, 1, 2, . . . ,m} that wr(0, .) ∼ N (0, I)
and ar(0, .) ∼ Unif[{−1, 1}] are i.i.d. random vectors, assume for all t ∈ (0,∞), ω ∈ Ω

that a(t, ω) = a(0, ω), let η ≤ λ0
8n2 , let K2 = 45(C2+1)162

2π , let δ ∈ (0, 1), let m ≥ K2n6

λ40δ
3 ,

assume for all k ∈ N0, r ∈ {1, 2, . . . ,m}, ω ∈ Ω that

wr(k + 1, ω) = wr(k, ω)− η 1√
m

n∑
i=1

(fi(k, ω)− yi)arxi1{(wr(t,.))∗xi≥0}(ω), (65)

let δ1 = δ2 = δ3 = δ4 = δ
4 , c =

√
2π
16 , R3 = cλ0δ4

n2 , let ĥi,j satisfy for all i, j ∈ {1, 2, . . . , n},
ŵ1, ŵ2, . . . , ŵn ∈ Rd that ĥi,j = 1

mx∗ixj
∑m

r=1 1{(ŵr)∗xi≥0,(ŵr)∗xj≥0}, let R =
√
2πδ2λ0
16n2 , let

Ai,r =
{
∃w : ‖w −wr(0, ω)‖2 ≤ R3,1{x∗iwr(0,.)≥0}(ω) 6= 1{x∗iw≥0}

}
∈ F , let

B4 =
{
ω ∈ Ω:

∑n
i=1

∣∣{r ∈ {1, 2, . . . ,m} : 1Ai,r(ω) = 1
}∣∣ ≤ C2mnR3

δ4

}
∈ F , let

B0(ω) =
{
ŵ1, ŵ2, . . . , ŵm ∈ Rd : maxr∈{1,2,...,m}‖wr(0, ω)− ŵr‖2 ≤ R

}
, let

B2 =
{
ω ∈ Ω:

∑n,n
j,i=1 supŵ1,ŵ2,...,ŵm∈B0(ω)

{∣∣∣ĥi,j − hi,j(0, ω)
∣∣∣} ≤ 4Rn2

δ2
√
2π

}
∈ F , let

B1 =
⋂n,n
i,j=1

{
ω ∈ Ω: |hi,j(0, ω)− hi,j | ≤

√
1
2m log

(
2n2

δ1

)}
∈ F and let

B3 =

{
ω ∈ Ω: ‖y − f(0, ω)‖22 ≤

n(C2+ 1
2)

δ3

}
∈ F .

Then

(i) it holds for all k ∈ N0, ω ∈ B1 ∩B2 ∩B3 ∩B4 that

‖f(k, ω)− y‖22 ≤ (1− ηλ0
2

)k‖f(0, ω)− y‖22. (66)

(ii) it holds that P(B1 ∩B2 ∩B3 ∩B4) ≥ 1− δ

Proof of Theorem 3.1.

Lemma 3.2. Assume the conditions of Theorem 3.1, let k ∈ N0 = {0, 1, 2 . . . }, let R2 be
given by

R2 =
4
√
n‖y−f(0,ω)‖2√

mλ0
, assume that (66) holds for all k

′ ∈ {1, 2, . . . , k}, ω ∈ B. Then it

holds for all r ∈ {0, 1, 2, . . . ,m}, ω ∈ B that

‖wr(k + 1, ω)−wr(0, ω)‖2 ≤ R2. (67)

Proof of Lemma 3.2. First note that η ≤ λ0
8n2 , Theorem 2.6 and Theorem 2.5 ensures that

0 < η <
2

λ0
. (68)

This ensures that
1

1−
(

1− ηλ0
2

) 1
2

≤ 4

ηλ0
. (69)
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Note that (65), the triangle inequality, (66), the formula for a geometric series, Lemma 7.6,
and (69) ensures for all ω ∈ B that

‖wr(k + 1, ω)−wr(0, ω)‖2 ≤
k∑
j=0

‖wr(j + 1, ω)−wr(j, ω)‖2

=

k∑
j=0

∥∥∥∥∥η 1√
m

n∑
i=1

(fi(j, ω)− yi)arxi1{(wr(t,.))∗xi≥0}(ω)

∥∥∥∥∥
2

≤ η√
m

k∑
j=0

n∑
i=1

‖fi(k, ω)− yi‖2

≤ η√
m

k∑
j=0

n∑
i=1

‖fi(k, ω)− yi‖1

=
η√
m

k∑
j=0

‖f(j, ω)− y‖1

≤ η
√
n√
m

k∑
j=0

‖f(j, ω)− y‖2

≤ η
√
n√
m
‖y − f(0, ω)‖2

k∑
j=0

(
1− ηλ0

2

) j
2

≤ η
√
n√
m

4

ηλ0
‖y − f(0, ω)‖2 = R2.

(70)

The proof of Lemma 3.2 is thus completed.

Lemma 3.3. Assume Setting 1.1, let C2 = 2√
2π
, c =

√
2π
16 , R3 = cλ0δ4

n2 , let Ai,r ∈ F be

given by

Ai,r =
{
∃w : ‖w −wr(0, ω)‖2 ≤ R3,1{x∗iwr(0,.)≥0}(ω) 6= 1{x∗iw≥0}

}
, (71)

let Si : Ω→ 2{1,2,...,m} satisfy for all ω ∈ Ω, i ∈ {1, 2, . . . , n} that

Si(ω) =
{
r ∈ {1, 2, . . . ,m} : 1Ai,r(ω) = 0

}
, (72)

let S⊥i : Ω→ 2{1,2,...,m} satisfy for all ω ∈ Ω, i ∈ {1, 2, . . . , n} that
S⊥i (w) = {1, 2, . . . ,m} \ Si(w), let

∣∣S⊥i ∣∣ : Ω → {1, . . . ,m} satisfy for all ω ∈ Ω, i ∈
{1, 2, . . . , n} that

∣∣S⊥i ∣∣(w) =
∣∣S⊥i (w)

∣∣, and let

B4 =
{
ω ∈ Ω:

∑n
i=1

∣∣S⊥i ∣∣(w) ≤ C2mnR3
δ4

}
∈ F . Then it holds that

P(B4) ≥ 1− δ4. (73)

Proof of Lemma 3.3. First, let X : Ω → R be a standard normal random variable, let
b ∈ [0, 1] be given by

b = P({|X| ≤ R3}), (74)

and let Y : Ω → R be a random variable that satisfies Y ∼ bin(b,m). This, combined
with the expectation of a binomial distributed random variable, (72), and Theorem 7.1
ensures that
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E
[∣∣∣S⊥i ∣∣∣] = E[

∣∣{r ∈ {0, 1, 2, . . . ,m} : 1Ai,r(.) 6= 0}
∣∣]

= E[|{r ∈ {0, 1, 2, . . . ,m} : w ∈ Ai,r}|]
= E[|{r ∈ {0, 1, 2, . . . ,m} : |wr(0, .))

∗xi| ≤ R3}|]
= E[Y ]

= Km

≤ 2R3m√
2π

.

(75)

This, the linearity of expectation, the fact that
∣∣S⊥i ∣∣ is a non negative random variable,

and Markov’s inequality 7.2 ensures that

P(B4) ≥ 1− δ4. (76)

The proof of Lemma 3.3 is thus completed.

Let Si : Ω→ 2{1,2,...,m} satisfy for all ω ∈ Ω, i ∈ {1, 2, . . . , n} that

Si(ω) =
{
r ∈ {1, 2, . . . ,m} : 1Ai,r(ω) = 0

}
, (77)

let S⊥i : Ω→ 2{1,2,...,m} satisfy for all ω ∈ Ω, i ∈ {1, 2, . . . , n} that
S⊥i (w) = {1, 2, . . . ,m} \Si(w), let k ∈ N0, assume that (66) hold for all k

′ ∈ {0, 1, . . . , k},
ω ∈ B, let Ii,k1 : Ω→ R satisfy for all ω ∈ Ω, i ∈ {0, 1, . . . , n}, k ∈ N0 = {0, 1, . . . } that

Ii,k1 (ω)

=
1√
m

∑
r∈Si

ar(σ((wr(k, ω)

− η 1√
m

n∑
j=1

(fj(k, ω)− yj)arxj1{(wr(t,.))∗xj≥0}(ω))∗xj)− σ((wr(k, ω))∗xj)),

(78)

let Ii,k2 : Ω→ R satisfy for all ω ∈ Ω, i ∈ {0, 1, . . . , n}, k ∈ N0 = {0, 1, . . . } that

Ii,k2 (ω)

=
1√
m

∑
r∈S⊥i

ar(σ((wr(k, ω)

− η 1√
m

n∑
j=1

(fj(k, ω)− yj)arxj1{(wr(t,.))∗xj≥0}(ω))∗xj)− σ((wr(k, ω))∗xj)),

(79)

let H⊥ = (h⊥i,j)i,j∈{1,2,...,n} : N0 × Ω → Rn×n satisfy for all i, j ∈ {1, 2, . . . , n}, k ∈ N0,
ω ∈ Ω that

h⊥i,j(k, ω) =
1

m

∑
r∈S⊥i

x∗ixj1{(wr(k,.))∗xi≥0,(wr(k,.))∗xj≥0}(ω). (80)

First, observe that

fi(k + 1, ω)− fi(k, ω) = Ii,k1 (ω) + Ii,k2 (ω). (81)
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The fact that σ is a 1-Lipschitz function, (78), and Lemma 7.6 ensures for all ω ∈ Ω,
i ∈ {1, 2, . . . , n}, k ∈ N0 that∣∣∣Ii,k2 (ω)

∣∣∣
≤ η√

m

∑
r∈S⊥i

∣∣∣∣∣∣
 1√

m

n∑
j=1

(fj(k, ω)− yj)arxj1{(wr(t,.))∗xj≥0}(ω)

∗xj
∣∣∣∣∣∣

≤ η√
m

∣∣∣S⊥i ∣∣∣(ω) max
r∈{0,1,2,...,m}

∣∣∣∣∣∣
 1√

m

n∑
j=1

(fj(k, ω)− yj)arxj1{(wr(t,.))∗xj≥0}(ω)

∗xj
∣∣∣∣∣∣

≤ η√
m

∣∣∣S⊥i ∣∣∣(ω) max
r∈{0,1,2,...,m}

∥∥∥∥∥∥ 1√
m

n∑
j=1

(fj(k, ω)− yj)arxj1{(wr(t,.))∗xj≥0}(ω)

∥∥∥∥∥∥
1

≤
∣∣∣S⊥i ∣∣∣(ω)

η

m
‖f(k, ω)− y‖1

≤
∣∣∣S⊥i ∣∣∣(ω)

η
√
n

m
‖f(k, ω)− y‖2.

(82)

The assumption that for all k
′ ∈ {0, ..., k}, ω ∈ B that (66) holds and Lemma 3.2 ensures

for all r ∈ {0, 1, . . . ,m}, ω ∈ B that

‖w(k + 1, ω)−w(0, ω)‖2 ≤ R2. (83)

Moreover, observe that m ≥ K2n6

λ40δ
3 , R2 =

4
√
n‖y−f(0,ω)‖2√

mλ0
, R3 = cλ0δ4

n2 ensures for all ω ∈ B3

that
R2 < R3. (84)

Note that (84), (55), and (83) ensures for all ω ∈ B ∩B3, r ∈ Si(ω), k ∈ N0 that

1{x∗iwr(k+1,.)≥0}(ω) = 1{x∗iwr(k,.)≥0}(ω). (85)

Next, note that (80), (78), and (85) ensures for all ω ∈ B ∩ B3, i ∈ {1, 2, . . . , n},
k ∈ N0 that

Ii,k1 (ω)

= − η
m

∑
r∈Si

a2r

 n∑
j=1

(fj(k, ω)− yj)xj1{(wr(k,.))∗xj≥0}(ω)

∗xi1{(wr(k,ω))∗xi≥0}(ω)

= − η
m

∑
r∈Si

n∑
j=1

x∗ixj1{(wr(k,.))∗xi≥0,(wr(k,.))∗xj≥0}(ω)(fj(k, ω)− yj)

= −η
n∑
j=1

(fj(k, ω)− yj)
(
hi,j(k, ω)− h⊥i,j(k, ω)

)
.

(86)

This ensures for all ω ∈ B ∩B3, k ∈ {0, 1, . . . } that

− Ik1 =
(
−H(k, ω) + H(k, ω)⊥

)
(y − f(k, ω)). (87)
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Moreover, Lemma 3.3 ensures for all ω ∈ B4, k ∈ N0 that∥∥∥H⊥(k, ω)
∥∥∥2
2

=
n∑
i=1

n∑
j=1

∣∣∣h⊥i,j(k, ω)
∣∣∣2

≤
n∑
i=1

n∑
j=1

∣∣S⊥i ∣∣2(ω)

m2
=

n∑
i=1

n
∣∣S⊥i ∣∣2(ω)

m2

≤ n

m2

(
n∑
i=1

∣∣∣S⊥i ∣∣∣2(ω)

)

≤ nR2
3

m2
.

(88)

This ensures that ∥∥∥H⊥(k, ω)
∥∥∥
2
≤ n3/2C2R3

δ4
. (89)

Next note that Lemma 7.6, σ is 1-Lipschitz, (65), and definition of fi ensures for all ω ∈ Ω,
k ∈ N0 that

|fi(k + 1, ω)− fi(k, ω)| ≤ η√
m

m∑
r=1

∣∣∣∣∣
(

1√
m

n∑
i=1

(fi(k, ω)− yi)arxi1{(wr(t,.))∗xi≥0}(ω)

)∗
xi

∣∣∣∣∣
≤ η√

m

m∑
r=1

∥∥∥∥∥ 1√
m

n∑
i=1

(fi(k, ω)− yi)arxi1{(wr(t,.))∗xi≥0}(ω)

∥∥∥∥∥
1

≤ η

m

m∑
r=1

‖f(k, ω)− y‖1

≤ η
√
n‖f(k, ω)− y‖2.

(90)

This ensures for all ω ∈ Ω, k ∈ N0 that

‖f(k + 1, ω)− f(k, ω)‖22 ≤ η
2n2‖f(k, ω)− y‖22. (91)

Furthermore, observe that Lemma 3.2 ensures that

−(y − f(k, ω))∗Ik2(ω) ≤
n∑
i=1

|yi − fi(k, ω)|
∣∣∣Ii,k2 (ω)

∣∣∣
≤ η
√
n

m
‖y − f(k, ω)‖2‖y − f(k, ω)‖1

n∑
i=1

∣∣∣S⊥i (ω)
∣∣∣

≤ ηn

m
‖y − f(k, ω)‖22

R3nmC2

δ4
.

(92)

Moreover, Lemma 2.8, (83), the fact that δ2 = δ4, and (84) ensures for all ω ∈ B1 ∩B2 ∩
B3 ∩B that

−(y − f(k, ω))∗H(k, ω)(y − f(k, ω)) ≤ −λ0
2
‖y − f(k, ω)‖22. (93)
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Combining this, (81), (82), (87), (89), (90), and (92) ensures for all ω ∈ B1 ∩ B2 ∩
B3 ∩B4 ∩B that

‖y − f(k + 1, ω)‖22
= ‖(y − f(k, ω)) + (f(k, ω)− f(k + 1, ω))‖22
= ‖y − f(k, ω)‖22 + ‖f(k + 1, ω)− f(k, ω)‖22

− 2(y − f(k, ω))∗Ik2 − 2(y − f(k, ω))∗Ik1

= ‖y − f(k, ω)‖22 + ‖f(k + 1, ω)− f(k, ω)‖22
− 2(y − f(k, ω))∗Ik2 − 2η(y − f(k + 1, ω))∗H(k, ω)(y − f(k, ω))

+ 2η(y − f(k + 1, ω))∗H⊥(k)(y − f(k, ω))

≤ (1 + η2n2 + 2
ηn2R3C2

δ4
− ηλ0 +

2ηn3/2C2R3

δ4
)‖y − f(k, ω)‖22.

(94)

This, combined with R3 = cλ0δ4
n2 , C = 2√

2π
, c =

√
2π
16 , and η ≤ λ0

8n2 asserts for all ω ∈
B1 ∩B2 ∩B3 ∩B4 ∩B that

‖y − f(k + 1, ω)‖22 ≤ ‖y − f(k, ω)‖22
(

1 + λ0η

(
−1 +

ηn2

λ0
+

1

4
+

1

4
√
n

))
≤ ‖y − f(k, ω)‖22

(
1− nη

2

)
.

(95)

Combining this and induction on k ensures for all ω ∈ B1 ∩B2 ∩B3 ∩B4, k ∈ N0 that

‖y − f(k + 1, ω)‖22 ≤ ‖y − f(k, ω)‖22
(

1− nη

2

)
. (96)

Observe that Lemma 3.3 and Lemma 2.10 establishes that P(B1 ∩B2 ∩B3 ∩B3) ≥ 1− δ.
The proof of Theorem 3.1 is thus completed.

4 Jointly training both layers

In this section we will consider the gradient flow algorithm for training both layers (97) of
the neural network (1). The analysis will be similar as when we trained only the hidden
layer, the bound on m will be of the same order of magnitude, and the bound on the
convergence rate will be the same. In this section we will follow the article [7] .

Remark 4.1. Note that the assumptions and resulting convergence rate in Theorem 4.2
are similar to the assumptions of Theorem 2.6.

Theorem 4.2. Assume Setting 1.1, let C ∈ [0,∞), assume for all i ∈ {1, 2, . . . , n} that

‖xi‖2 = 1, |yi| ≤ C, let δ ∈ (0, 1), K = 22162(C2+1)33

2π , m ≥ Kn6

λ40δ
max

(
322

33δ2
, 2π log

(
4nm
δ

))
,

assume for all r ∈ {0, 1, 2, . . . ,m} that, wr(0, .) ∼ N (0, I) and ar(0, .) = Unif[{−1, 1}]
are i.i.d. random vectors, assume for all r ∈ {1, 2, . . . ,m}, ω ∈ Ω, t ∈ [0,∞) that

dwr(t, ω)

dt
= − 1√

m

n∑
i=1

(fi(t, ω)− yi)arxi1{(wr(t,.))∗xi≥0}(ω)

dar(t, ω)

dt
= −

n∑
i=1

(fi − yi)
1√
m
σ((wr(t, ω))∗xi),

(97)
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let δ1 = δ2 = δ3 = δ5 = δ
4 , let ĥi,j satisfy for all i, j ∈ {1, 2, . . . , n}, ŵ1, ŵ2, . . . , ŵm ∈ Rd,

â1, â2, . . . , âm ∈ R that ĥi,j = 1
mx∗ixj

∑m
r=1 â

2
r1{(ŵr)∗xi≥0,(ŵr)∗xj≥0}, let R =

√
2πδ2λ0
16n2 , let

B5 =
⋂n,m
i,r=1

{
|(wr(0, ω))∗xi| ≤

√
1
2 log

(
2nm
δ5

)}
∈ F , let

B0(ω) =
{
ŵ1, ŵ2, . . . , ŵm ∈ Rd : maxr∈{1,2,...,m}‖wr(0, ω)− ŵr‖2 ≤ R

}
, let

B2 =
{
ω ∈ Ω:

∑n,n
j,i=1 supŵ1,ŵ2,...,ŵm∈B0(ω)

{∣∣∣ĥi,j − hi,j(0, ω)
∣∣∣} ≤ 4Rn2

δ2
√
2π

}
∈ F , let

B1 =
⋂n,n
i,j=1

{
ω ∈ Ω: |hi,j(0, ω)− hi,j | ≤

√
1
2m log

(
2n2

δ1

)}
∈ F and let

B3 =

{
ω ∈ Ω: ‖y − f(0, ω)‖22 ≤

n(C2+ 1
2)

δ3

}
∈ F . Then

(i) it holds that P(B1 ∩B2 ∩B3 ∩B5) ≥ 1− δ

(ii) it holds for all t ∈ [0,∞), ω ∈ B1 ∩B2 ∩B3 ∩B5 that

‖f(t, ω)− y‖22 ≤ exp(−λ0t)‖f(0, ω)− y‖22. (98)

Proof of Theorem 4.2. First, let Rw, Ra, R
′
w and R

′
a be given by Rw =

√
2πδ2λ0
32n2 = R

2 ,

Ra = λ0
n220

, R
′
w = 4

√
n

λ0
√
m
‖f(0, ω)− y‖2, and R

′
a = 4

√
n

λ0
√
m

(√
log
(
nm
δ5

))
‖f(0, ω)− y‖2, and

let G = (gi,j)i,j∈{1,2,...,n} : [0,∞) × Ω → Rn×n satisfy for all i, j ∈ {0, 1, 2, . . . , n}, ω ∈ Ω,
t ∈ [0,∞) that

gi,j(t, ω) =
m∑
r=1

1

m
σ((wr(t, ω))∗xi)σ((wr(t, ω))∗xj). (99)

This, combined with

dfi(t, ω)

dar
=

1√
m
σ((wr(t, ω))∗xi), (100)

(30), and (97) ensures that

df(t, ω)

dt
= (H(t, ω) + G(t, ω))(y − f(t, ω)). (101)

Lemma 4.3. Assume Setting 1.1, assume that the conditions of Theorem 4.2 hold, let
ω ∈ Ω, t ∈ (0,∞), assume for all s ∈ [0, t] that λmin(H(s, ω)) ≥ λ0

2 . Then it holds that

‖y − f(t, ω)‖22 ≤ ‖y − f(0, ω)‖22 exp(−λ0t). (102)

Proof of Lemma 4.3. First, note that Lemma 7.9 and the fact that G(t, ω) is positive
semi-definite ensures that

d

dt
‖y − f(t, ω)‖22 = −2(y − f(t, ω))∗(H(t, ω) + G(t, ω))(y − f(t, ω)) ≤ −λ0‖y − f(t, ω)‖22.

(103)
This ensures that

d

dt

(
exp(λ0t)‖y − f(t, ω)‖22

)
≤ 0. (104)

This implies that
‖y − f(t, ω)‖22 ≤ ‖y − f(0, ω)‖22 exp(−λ0t). (105)

The proof of Lemma 4.3 is thus completed.
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Lemma 4.4. Assume the conditions of Theorem 4.2 hold, let ŵ1, ŵ2, . . . , ŵm ∈ Rd,
â1, â2, . . . , âm ∈ R, let Ĥ = (ĥi,j)i,j∈{1,2,...,n} ∈ Rn×n satisfy for all i, j ∈ {1, 2, . . . , n} that

ĥi,j =
1

m
x∗ixj

m∑
r=1

â2r1{(ŵr)∗xi≥0,(ŵr)∗xj≥0}, (106)

let δ1, δ2 ∈ (0, 1), let B1 =
⋂n,n
i,j=1

{
ω ∈ Ω: |hi,j(0, ω)− hi,j | ≤

√
1
2m log

(
2n2

δ1

)}
∈ F , B2 ={

ω ∈ Ω:
∑n,n

j,i=1 supŵ1,ŵ2,...,ŵm∈B0(ω)

{∣∣∣ĥi,j − hi,j(0, ω)
∣∣∣} ≤ 4Rn2

δ2
√
2π

}
, let ω ∈ B1 ∩ B2 and

assume that for all r ∈ {0, 1, 2, . . . ,m} it holds that

‖ŵr −wr(0, ω)‖2 ≤ Rw, (107)

and
|âr − ar(0, ω)| ≤ Ra. (108)

Then

(i) it holds that ∥∥∥Ĥ−H(0, ω)
∥∥∥ ≤ λ0

4
(109)

(ii) it holds that

λmin(Ĥ) ≥ λ0
2
. (110)

Proof of Lemma 4.4. Lemma 2.8 and (106) ensures that∥∥∥H′ −H(0, ω)
∥∥∥
2
≤ λ0

8
(111)

and

λmin(H
′
) ≥ λ0

2
. (112)

In the next step, observe that ∣∣∣ĥi,j − h
′
i,j

∣∣∣ ≤ 1

m

m∑
r=1

∣∣â2r − 1
∣∣

≤ R2
a + 2Ra.

(113)

Note that Theorem 2.5 ensures that

λ20 ≤ n210. (114)

Combining this, (113), (111), Lemma 7.7 and Lemma 7.6, and the triangle inequality
ensures that ∥∥∥Ĥ−H(0, ω)

∥∥∥
2
≤
∥∥∥Ĥ−H

′
∥∥∥
2

+
∥∥∥H′ −H(0, ω)

∥∥∥
2

≤ n2
(
R2
a + 2Ra

)
+
λ0
8
≤ λ0

4
.

(115)

This, Lemma 2.7 and Lemma 7.8 ensures that

λmin(Ĥ) ≥ λ0
2
. (116)

The proof of Lemma 4.4 is thus completed.
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Lemma 4.5. Let ω ∈ Ω, assume that for all s ∈ [0, t] it holds that

λmin(H(s, ω)) ≥ λ0
2
, (117)

and assume that for all r ∈ {0, 1, 2, . . . ,m}, s ∈ [0, t] it holds that |ar(s, ω)− ar(0, ω)| ≤
Ra. Then it holds that

‖wr(t, ω)−wr(0, ω)‖2 ≤ R
′
w. (118)

Proof of Lemma 4.5. First, note that Lemma 4.3 ensures that for all s ∈ [0, t] it holds
that ∥∥∥∥dwr(s, ω)

ds

∥∥∥∥
2

=
1√
m

∥∥∥∥∥
n∑
i=1

(fi(s, ω)− yi)ar(s, ω)xi1{(wr(s,.))∗xi≥0}(ω)

∥∥∥∥∥
2

≤ 1√
m

n∑
i=1

‖(fi(s, ω)− yi)ar(s, ω)‖2

≤ |ar(s, ω)|√
m

n∑
i=1

‖fi(s, ω)− yi‖1

=
|ar(s, ω)|

√
n√

m
‖f(s, ω)− y‖2

≤ |ar(s, ω)|
√
n√

m
‖f(0, ω)− y‖2 exp

(
−λ0s

2

)
.

(119)

Note that Theorem 2.5 ensures that

Ra ≤ 1. (120)

This, combined with (119), Lemma 7.3, implies that

‖wr(t, ω)−wr(0, ω)‖2 =

∥∥∥∥∫ t

0

dwr(s, ω)

ds
ds

∥∥∥∥
2

≤
∫ t

0

∥∥∥∥dwr(s, ω)

ds

∥∥∥∥
2

ds

≤
√
n√
m
‖f(0, ω)− y‖2

∫ t

0
|ar(s, ω)| exp

(
−λ0s

2

)
ds

≤
√
n√
m
‖f(0, ω)− y‖2|Ra + 1| 2

λ0

≤ 4
√
n

λ0
√
m
‖f(0, ω)− y‖2 = R

′
w.

(121)

The proof of Lemma 4.5 is thus completed.

Lemma 4.6. Let B5 =
⋂n,m
i,r=1

{
|(wr(0, ω))∗xi| ≤

√
1
2 log

(
2nm
δ5

)}
, let ω ∈ B5, t ∈ (0,∞),

assume for all s ∈ [0, t] that

λmin(H(s, ω)) ≥ λ0
2
, (122)

and assume for all r ∈ {0, 1, 2, . . . ,m}, s ∈ [0, t] that ‖wr(s, ω)−wr(0, ω)‖2 ≤ Rw. Then
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(i) it holds for all r ∈ {0, 1, 2, . . . ,m} that

|ar(t, ω)− ar(0, ω)| ≤ R′a (123)

(ii) P(B5) ≥ 1− δ5.

Proof of Lemma 4.6. First note that Lemma 7.1 ensures for all r ∈ {0, 1, 2, . . . ,m}, i ∈
{0, 1, 2, . . . , n} that (wr(0, .))

∗xi ∼ N (0, 1). This, Theorem 7.4, and Theorem 7.5 thus
ensures that

P(B5) ≥ 1− δ5. (124)

Let ω ∈ B5, t ∈ (0,∞), assume for all s ∈ [0, t] that

λmin(H(s, ω)) ≥ λ0
2
, (125)

and assume for all r ∈ {0, 1, 2, . . . ,m}, s ∈ [0, t] that ‖wr(s, ω)−wr(0, ω)‖2 ≤ Rw. This,
combined with (97), Lemma 7.6, Lemma 4.3, and the fact that
|x∗iwr(s, ω)| ≤ |x∗iwr(0, ω)| + ‖wr(s, ω)−wr(0, ω)‖2 ensures for all r ∈ {0, 1, 2, . . . ,m}
that ∣∣∣∣dar(s, ω)

ds

∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

(fi(s, ω)− yi)
1√
m
σ((wr(s, ω))∗xi)

∣∣∣∣∣
≤ 1√

m

n∑
i=1

|(fi(s, ω)− yi)||(wr(s, ω))∗xi|

≤ 1√
m

(√
1

2
log

(
2nm

δ5

)
+Rω

)
‖f(s, ω)− y‖1

≤
√
n√
m

(√
1

2
log

(
2nm

δ5

)
+Rω

)
‖f(s, ω)− y‖2

≤
√
n√
m

(√
1

2
log

(
2nm

δ5

)
+Rω

)
‖f(0, ω)− y‖2 exp

(
−λ0s

2

)
.

(126)

Note that Theorem 2.5 ensures that

Rw ≤ 1. (127)

This, (126), ensures for all r ∈ {0, 1, 2, . . . ,m} that

|ar(t, ω)− ar(0, ω)| ≤
∫ t

0

∣∣∣∣dar(s)ds

∣∣∣∣ds
≤ 2

√
n

λ0
√
m

(√
log

(
nm

δ5

)
+Rω

)
‖f(0, ω)− y‖2

≤ 4
√
n

λ0
√
m

(√
log

(
nm

δ5

))
‖f(0, ω)− y‖2

= R
′
a.

(128)

The proof of Lemma 4.6 is thus completed.
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Next, note that m ≥ Kn6

λ40δ
max

(
322

33δ2
, 2π log

(
4nm
δ

))
ensures for all

ω ∈ B3 =

{
ω ∈ Ω: ‖y − f(0, ω)‖22 ≤

n(C2+ 1
2)

δ3

}
∈ F that R

′
w < Rw and R

′
a < Ra.

Lemma 4.7. Assume the conditions of Theorem 4.2 and let ω ∈ B1 ∩ B2 ∩ B3 ∩ B5,
t ∈ [0,∞). Then

(i) it holds that P(B1 ∩B2 ∩B3 ∩B5) ≥ 1− δ

(ii) it holds that

λmin(H(t, ω)) ≥ λ0
2

(129)

(iii) for all r ∈ {0, 1, 2, . . . ,m} it holds that

‖wr(t, ω)−wr(0, ω)‖2 ≤ R
′
w (130)

(iv) it holds that
|ar(t, ω)− ar(0, ω)| ≤ R′a (131)

(v) it holds that
‖y − f(t, ω)‖22 ≤ exp(−tλ0)‖y − f(0, ω)‖22. (132)

Proof of Lemma 4.7. First note that (124) and Lemma 2.10 establishes item (i). Note
that R

′
w < Rw and that R

′
a < Ra. Assume that the theorem does not hold, let t1 ∈ [0,∞)

be the minimal such that the theorem does not hold for all t ∈ [0, t1], ω ∈ B1∩B2∩B3∩B5.
Assume that there exist a ω0 ∈ B1 ∩ B2 ∩ B3 ∩ B5 such that λmin(H(t1, ω0)) <

λ0
2

then Lemma 4.4 ensures that there exist a r ∈ {1, 2, . . . ,m} such that
‖wr(t1, ω0)−wr(0, ω0)‖ > Rw or/and |ar(t1, ω0)− ar(0, ω0)| > Ra. The assumption that
R
′
w < Rw and R

′
a < Ra ensures a contradiction to the minimality of t1.

Assume that there exist r ∈ {1, 2, . . . ,m}, ω0 ∈ B1 ∩ B2 ∩ B3 ∩ B5 such that
‖wr(t1, ω0)−wr(0, ω0)‖2 > R

′
w then Lemma 4.5 and the fact that R

′
a < Ra ensures

that ‖wr(t1, ω0)−wr(0, ω0)‖2 ≤ R
′
w, a contradiction.

Assume that there exist r ∈ {1, 2, . . . ,m}, ω0 ∈ B1 ∩ B2 ∩ B3 ∩ B5 such that
|ar(t1, ω0)− ar(0, ω0)| > R

′
a. Then Lemma 4.6, and the fact that R

′
w < Rw ensures

for all r ∈ {0, 1, 2, . . . ,m} that |ar(t1, ω0)− ar(0, ω0)| ≤ R
′
a, a contradiction.

Assume that there exist ω0 ∈ B1 ∩ B2 ∩ B3 ∩ B5 such that ‖y − f(t1, ω0))‖22 >
exp(−t1λ0)‖y − f(0, ω0)‖22, then by Lemma 4.3 there exist an s ∈ [0, t1] such that
λmin(H(s, ω)) < λ0

2 , a contradiction.
The proof of Lemma 4.7 is thus completed.

The proof of Theorem 4.2 is thus completed.

5 Numerical Experiments

Following [7], we test some of the results by applying gradient descent to synthetic data.
We generated n = 100 data points {xi}100i=1 such that xi ∈ Unif[(−1, 1)]d for d = 1000,
and y ∼ N (0, I). Note that one epoch corresponds to one step with gradient descent. In
Figure 1(A) we compare the convergence rate of the training loss for different values of m
when trained with gradient descent. We normalise the training loss for the cases where
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Figure 1: Results for synthetic data when training the neural network with gradient
descent for n = 100, d = 1000.

m 6= 1000 so that all training losses are the same as the training loss for m = 1000 in the
first epoch to more clearly see the difference in convergence rate for different values of m.
In Figure 1(B) we plot the percentage of all r ∈ {0, 1, 2, . . . ,m}, i ∈ {0, 1, 2, . . . , n} such
that the activation pattern changes sign, i.e., such that it holds that sign((wr(k, ω))∗xi) 6=
sign((wr(0, ω))∗xi). This illustrates the result of Lemma 2.8.

In Figure 1(C) we plot the maximum distance the weights has from their initialisation,
aiming to illustrate the result in Lemma 3.2.

In Figure 1(D) we consider how the least eigenvalue of H, an important measure to
understand the convergence properties of the training loss, changes during the iterations
and for different values of m. This illustrates Theorem 2.5, and showcases an estimate on
an bound on the convergence rate.

The full code to generate the results shown in the figures, written in Python, is
available on GitHub: https://github.com/Elliotepsteino/Gradient-Descent.git.

6 Discussion

The analysis focus only on the training loss and not the test loss, which is a limitation on
the strength of the result. Also, a change of the proof to allow for accelerated methods to
optimise the training loss would make the result more practically useful. The dependence
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on n6 for the over-parametrization of the number of weights limits the practical scope to
use the result to theoretically ensure convergence for algorithms used in practice. Further,
most neural networks used in practice are deep, which limits the scope of the result. This
weakness is addressed in [8], a result that requires more involved arguments.

Despite this, the result is novel in that with small limitations on the input data,
convergence to zero training loss in polynomial time is guaranteed with a high probability
over the random initialisation of the weights.

6.1 Further directions

In order to extend the analysis to deep neural networks, i.e., if f has the form

f = (a)∗σ
(
W(H)σ(W(H−1)...σ(W(1)))

)
, (133)

were W1,W2, . . .WH are matrices and H is the depth of the network. One can follow the
analysis made in [8]. When the depth of the network, H, is equal to one, the dependence
on n for the over-parametrization is also improved from Ω(n6) to Ω(n4). In a similar way as

in [7], it is possible to write the prediction dynamics as df(t,ω)
dt =

(∑H
j=1G

j
)

(y−f(t, ω)). It

can be shown that all Gj are positive semi-definite, thus, the analysis focuses on showing
that G(H) is positive definite. To show this, it is used that at each step k = 0, 1, ...,
G(k) is close in 2-norm to a recursively defined matrix K(H) that is not dependant on
the weights and that is positive definite if no two inputs are parallel, in analogy to the
present treatment of H.

7 Appendix

In the appendix a number of basic theorems that are used repeatedly are listed for an
easy reference. Most theorems will not be proved, but a reference will be given.

Theorem 7.1. Let w be a standard normal random vector and let ‖x‖22 = 1. Then it
holds that

w∗x ∼ N (0, 1) (134)

Proof of Theorem 7.1. Using that all components of a standard normal random vector is
independent standard normal random variables, and that ‖x‖22 = 1 ensures that

w∗x =
d∑
i=1

wixi ∼ N

(
0,

d∑
i=1

x2i

)
= N (0, 1). (135)

The proof of Theorem 7.1 is thus completed.

Theorem 7.2 (Markov). If X is a nonnegative random variable and a > 0 then it holds
that

P (X ≥ a) ≤ E[X]

a
. (136)

Proof of Theorem 7.2. See the book [9].

Theorem 7.3. Let X : R→ Rd be a vector valued function. Then it holds that∥∥∥∥∫ t

0
X(s)ds

∥∥∥∥
2

≤
∫ t

0
‖X(s)‖2ds (137)
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Proof of Theorem 7.3. See the book [9].

Theorem 7.4 (Hoeffding). Let (Ω, F,P) be a probability space, let N ∈ N and let
Xn : Ω→ [0, 1], be independent random variables. Then

P

(
1

N

∣∣∣∣∣
N∑
n=1

(Xn − E[Xn])

∣∣∣∣∣ ≥ ε
)
≤ 2 exp(−2ε2N). (138)

Proof. See the article [13].

Theorem 7.5 (Union Bound). Let P be a probability measure on (Ω,F). Then it holds
for all Ai ∈ F , i ∈ N that

P

( ∞⋃
i=1

Ai

)
≤

n∑
i=1

P(Ai). (139)

Proof of Theorem 7.5. See the book [9].

Lemma 7.6. Let x ∈ Rn, let ‖.‖2 : Rn → R be the Euclidean norm on Rn, and let
‖.‖1 : Rn → R satisfy for all b = (b1, b2, . . . , bn) ∈ Rn that ‖b‖1 =

∑n
i=1|bi|. Then it holds

that
‖x‖2 ≤ ‖x‖1 ≤

√
n‖x‖2 (140)

Proof of Lemma 7.6. See the book [1].

Lemma 7.7. Let A be a square matrix, let ‖A‖2 be the matrix 2-norm and let ‖A‖F be
the frobenius norm. Then it holds that

‖A‖2 ≤ ‖A‖F . (141)

Proof of Lemma 7.7. See the book [1].

Lemma 7.8. For all square, symmetric matrices A and B it holds that

|λmin(A)− λmin(B)| ≤ ‖A−B‖2 (142)

Proof of Lemma 7.8. See the book [1].

Lemma 7.9. Let n ∈ N, assume that H ∈ Rn×n is a square matrix. Then for all x ∈ Rn
it holds that

x∗Hx ≥ λmin(H)‖x‖22. (143)

Proof of Lemma 7.9. See the book [1].
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